

Hydrogen Sulfide Emission and Dispersion at Construction and Demolition Debris Landfills

Qiyong Xu¹

Timothy G. Townsend², Ph.D., P.E.

Department of Environmental Engineering Sciences
University of Florida

P.O. BOX 116450, Gainesville, FL 32611-6450, USA

¹qiyongxu@ufl.edu; ²ttown@ufl.edu

Abstract: The emission of hydrogen sulfide from construction and demolition (C&D) debris landfills has resulted in offsite odor complaints at numerous sites in North America. Hydrogen sulfide results from the biological transformation of sulfate from discarded gypsum drywall, a major component of the C&D debris stream. Unlike MSW landfills, C&D debris landfills are not typically constructed with gas collection systems. Hydrogen sulfide concentrations within C&D debris landfills can be very high, but the gas is diluted as it leaves the landfill and mixes with air. The impact of uncontrolled hydrogen sulfide emissions varies as a result of site-specific conditions such as climate, terrain, landfill cover soil and disposal practices. Ambient hydrogen sulfide concentrations that might be typically expected at C&D debris landfills were predicted using an air dispersion model recommended by the EPA, the Gaussian-Plume Multiple Source Air Quality Algorithm (RAM). A range of emission data and weather conditions were used as model inputs. The spatial and time variations of hydrogen sulfide concentrations in an area surrounding a hypothetical landfill cell were examined. The results are presented in a graphical form that provides a means of quickly assessing concentration ranges expected under a variety of conditions. Phenomena related to hydrogen sulfide dispersion at C&D debris landfills are also discussed.

Keywords: hydrogen sulfide; C&D debris landfill; air dispersion model; RAM

INTRODUCTION

Construction and demolition (C&D) debris is one of the largest solid waste streams in the United States (US) and the most common management practice for C&D debris is landfilling (EPA, 1998). One environmental problem associated with C&D debris landfills is odor production (Crosson, 1995; Flynn, 1998; Johnson, 1986). Although many compounds can contribute to malodorous conditions, hydrogen sulfide (H₂S) has been identified as the major contributor to odor problems at C&D debris landfills receiving a large amount of gypsum drywall (Townsend et al., 2000 & 2004). The production of H₂S within C&D debris landfills results from the biological transformation of sulfate (SO₄²⁻) leaching from gypsum drywall (CaSO₄·2H₂O), a major component of C&D debris. When gypsum drywall (approximately 90% CaSO₄·2H₂O and 10% paper) becomes wet under anaerobic conditions (as expected to occur in most landfills), sulfate-reducing bacteria flourish and use sulfate as a terminal electron acceptor, producing H₂S (Gypsum Association, 1992). Because of its distinctive “rotten egg” smell and low detectable odor threshold (reported as low as 0.5 ppb; Godish, 1991), H₂S emitted from C&D debris landfills has been a major issue at many landfills in Florida and other states in the US with respect to odor, and has raised questions regarding possible impacts on human health (Flynn, 1998).

The issue of H₂S emissions from C&D debris landfills in Florida first surfaced as a possible statewide concern when the Sunset Sand Mine and Landfill, a C&D debris landfill in Central

Florida, was closed in 1995 largely as a result of high concentrations of H₂S in the surrounding neighborhoods (Crosson, 1995). Nearby residents were evacuated twice. One report claimed that H₂S concentrations as high as 3 ppm were measured one quarter of a mile away from the site. Since this time, other sites have also reported odor complaints, and the state has funded several research projects to investigate the issue further. In one study (Townsend et al., 2000), H₂S concentrations in the air directly above a C&D debris landfill were found to be extremely variable, and to range from 3 ppb to above 50 ppm. The study concluded that H₂S concentrations within the waste at C&D debris landfills varied over many orders of magnitude, and that the concentrations experienced off-site would be heavily influenced by the effect of meteorological conditions.

While several investigators have attempted to measure, estimate or model landfill gas emissions from municipal solid waste (MSW) landfills (Perera et al., 2002; Schmidt et al., 1998; Yedla and Parikh, 2002), little research has been conducted to address H₂S emission and dispersion at C&D debris landfills. The objective of the research presented in this paper was to examine the range of H₂S concentrations that might be expected to occur in the ambient air surrounding a C&D debris landfill, and to assess the conditions (particularly meteorological conditions) that would most impact these concentrations. This was performed by modeling ambient H₂S concentrations surrounding two landfills using an EPA recommended air dispersion model (RAM, a Gaussian-plume multiple source air quality algorithm). The two landfill scenarios included a hypothetical site and a site roughly modeled after an existing C&D debris landfill where some ambient H₂S concentrations and surface flux measurements have been collected. The concentrations occurring at any particular site will vary as a function of multiple factors and it is beyond the scope of this paper to address all possible conditions. The paper does, however, provide an overview of what might generally be expected at typical sites and what factors most control expected ambient H₂S concentrations.

METHODOLOGY

Ambient H₂S concentrations were modeled for two different scenarios. A simple hypothetical landfill was used to examine the range of typical ambient air H₂S concentrations and to examine the factors impacting concentrations. A second scenario was based on an actual landfill where the authors have performed a limited amount of H₂S emission monitoring (Reinhart and Townsend, 2003). While not an exhaustive effort, the modeling of the actual site does allow some comparison of the magnitude of modeled and measured concentrations. The methods described below include an overview of the model used, a description of the sites, and the measurement techniques performed at the actual landfill.

RAM Model

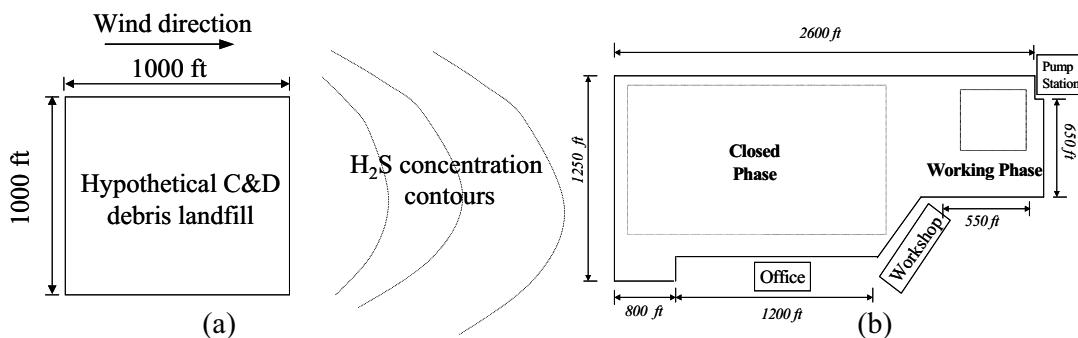
RAM is a steady-state Gaussian plume model recommended by the US EPA for evaluating the impact of emission sources on air quality over short-term periods. *RAM* has the capability to model emissions from point and area sources in urban or rural areas. A total of 250-point sources and 100 area sources can be modeled in one run. One set of meteorological data (e.g., wind speed, wind direction, stability, and mixing height) is considered to represent the entire region being modelled. The major inputs to the model include coordinates describing the emission sources, the emission rate, the source height, the side length of the area source, wind speed and direction, and the Pasquill stability class, among others. The model assumes that dispersion from both point and area sources results in Gaussian distributions in both the horizontal and vertical directions. The narrow plume simplification of Gifford and Hanna is used for area sources. The user's guide of the model should be consulted for more details (Catalano et al., 1987).

Site Description

The two C&D debris landfill scenarios included the hypothetical landfill and the one based upon an actual landfill. The hypothetical landfill was assigned an area of 1,000 ft by 1,000 ft (approximately 23 acres). Figure 1 (a) presents the layout of the site with respect to wind direction. The actual landfill (Figure 1 (b)) used to base the second modeling scenario on is located in Winter Garden, Florida. At the time of this study, the facility was an active C&D debris landfill and included both inactive and active fill areas. The total area of the landfill is approximately 80 acres and the design capacity is 4,000,000 yd³. The landfill started to operate in 1991 and its annual waste disposal rate is approximately 240,000 tons. It was reported (Chakrabarti, 2002) that gypsum drywall represents approximately 4% of the volume of waste disposed in the facility.

H₂S Sampling and Measurement

An ongoing study is examining the emission rates and control of H₂S from several operating C&D debris landfills in Central Florida (Reinhart and Townsend, 2003). The landfill described above was one of the sites where both H₂S surface flux measurements and ambient H₂S concentrations were measured. The results of this study will be reported in their entirety upon completion. Some of the preliminary results were used as a comparison to the modeling work performed for this paper. At the landfill, a 65-L flux chamber (Odotech Inc.) was used to measure H₂S surface emissions. The rate of H₂S emission may be described as follows:


$$F = \left(\frac{V}{A}\right) \times \left(\frac{\Delta C}{\Delta t}\right)$$

Where: F (g/m²-s) is the flux of H₂S; V (m³) is the volume of air within the chamber; A (m²) is the area of soil surface enclosed by the chamber; and $\Delta C / \Delta t$ (g/m³s) is the time rate of change of H₂S concentration. A Jerome Meter (model 631-X) from Arizona Instruments was used to analyze gas samples for hydrogen sulfide concentrations. The Jerome Meter has a detection range of 0.003 ppm to 50 ppm (Arizona Instrument LLC, 2003).

RESULTS AND DISCUSSIONS

H₂S dispersion at C&D debris landfills

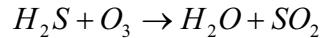
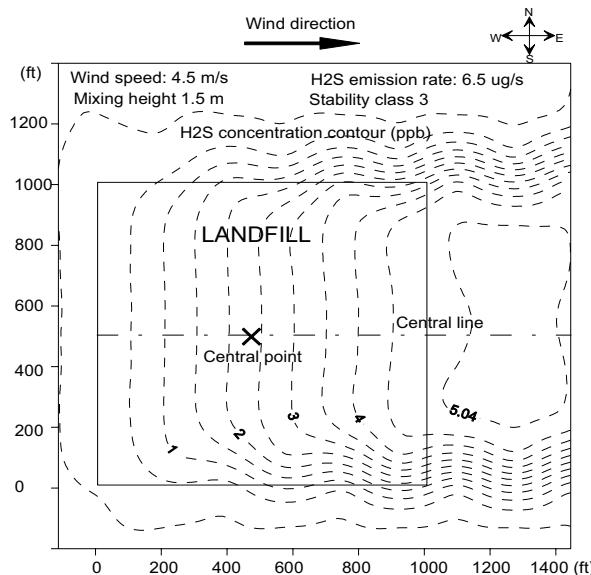

The C&D debris landfills were modeled as area sources with continuous H₂S emissions. As H₂S is emitted from the surface of the landfill, it mixes and travels with the wind, which dilutes the H₂S and carries it away from the landfill. Figure 2 show the concentration contour of ambient H₂S for the hypothetical C&D landfill. This particular scenario was created under normal meteorological conditions, a stability class of 3 and a wind speed 4.5 m/s (the average North American ground-level wind speed; Noel, 1995). By considering the thermal buoyancy and

Figure 1. Definition sketch of (a) the hypothetical C&D debris landfill and (b) the scenario modeled based upon an operating C&D debris landfill.

momentum of the emitting H₂S, the mixing height was selected as 1.5 m. The H₂S emission rate, 6.5 µg/s, was calculated by the product of the total area of the hypothetical landfill and a typical flux rate of 7×10^{-8} mg/m²-s that was measured by the flux chamber described above (Reinhart and Townsend, 2003). The impact of different flux rates will be discussed in greater detail in the next section. It can be seen that the ambient H₂S concentrations increase as the wind travels over the landfill. The maximum concentrations are observed just downwind of the landfill, and eventually these concentrations begin to diminish. Because of model limitations associated with the receptor intervals and the contour plotting method, contour lines show some degree of curvature that is not realistically expected to occur. This figure simply provides a general overview of what typical H₂S dispersion will look like. The factors impacting this dispersion will be discussed in greater detail in the following sections.


It is noted that the modeling work conducted here assumed that H₂S was conserved and not otherwise degraded or transformed. Thus the concentrations presented are conservative. The major sink for H₂S that will result in its removal from the ambient air is atmospheric conversion to sulfur dioxide (SO₂). The released H₂S has been reported to not react photo-chemically (ATSDR, 1999), but instead to react with atomic oxygen (O), oxygen (O₂), or ozone (O₃) to form SO₂ (Bibbero, 1974).

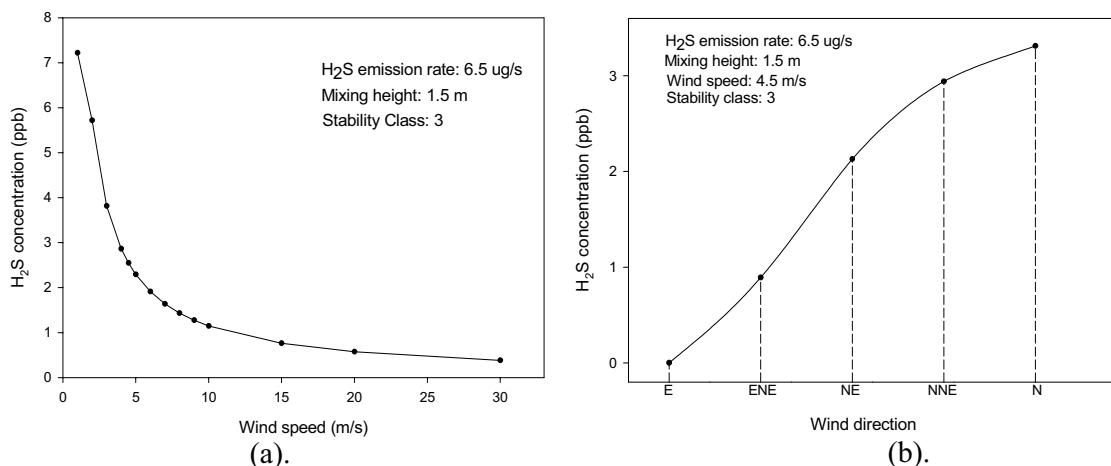
Although SO₂ also has pungent odor, its odor threshold (1 ppm) is much higher than H₂S (0.5 ppb) (ATSDR, 2001), which means the SO₂ converted from H₂S will not be detected at concentrations expected to be encountered. In general, the lifetime of H₂S before conversion to SO₂ is on the order of hours (Seinfeld, 1975). While H₂S emitted from the landfill will ultimately be oxidized, this removal process likely does not occur until after the H₂S has been sufficiently diluted.

Effect of wind on H₂S dispersion

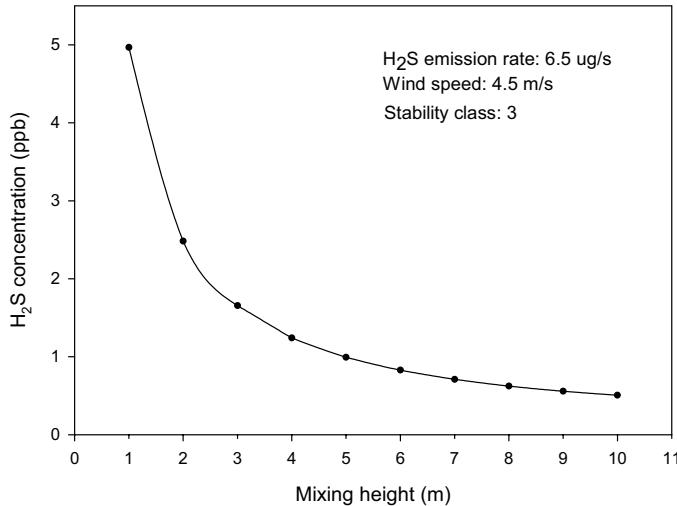
Wind speed and direction are among the most important factors influencing H₂S dispersion at landfills. A pre-specified point, 200 ft away from the boundary of the hypothetical landfill, was selected to examine the effect of wind speed on H₂S dispersion. The modeled H₂S concentrations at a variety of different wind speeds are shown in Figure 3 (a). As wind speed increases, the H₂S concentration decreases dramatically, illustrating how a higher wind velocity results in a greater

Figure 2 Ambient H₂S concentration contours at the hypothetical landfill

degree of dilution with air. Therefore, the ambient H₂S concentration is an inverse function of the wind speed.


Wind provides the primary driving force for H₂S movement and H₂S concentrations are greatest in the direction where the wind is blowing. Figure 3 (b) presents the pre-specified point of H₂S concentration change for the hypothetical landfill under different wind directions. It can be seen that H₂S concentrations at the same point are variable with the change of wind direction from East to North. The impact of changing wind speed and direction have been noted anecdotally in previous observations where H₂S odors could be detected one minute and not the next at landfills with known odor problems (Townsend et al., 2000).

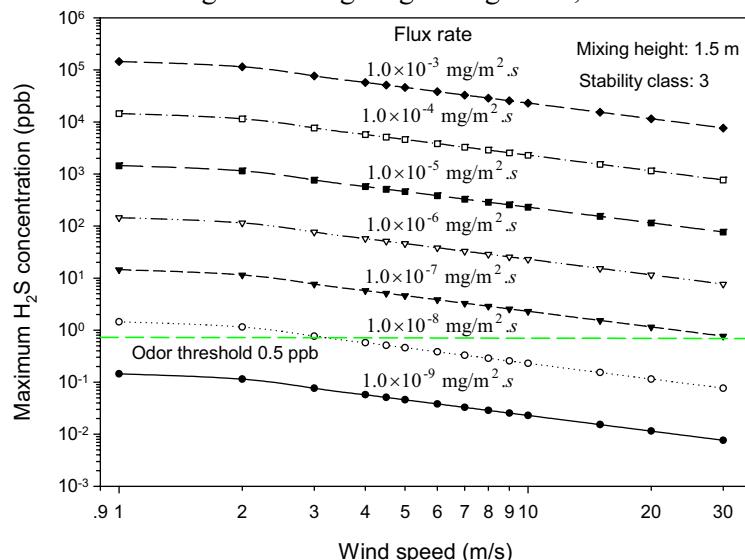
Effect of maximum mixing height on H₂S dispersion


In addition to the driving force by wind, H₂S dispersion is also affected by convective and turbulent mixing resulting from vertical temperature differences. Because of solar energy, the ground temperature may be different from the temperature of overlying air, which causes convective and turbulent mixing to occur. The maximum mixing height (MMH) represents the maximum height of the convective layer and shows the vertical extent to which emitted H₂S mixing can take place. The MMH ranges from near zero to thousands of meters, depending on the season and the site topography. Figure 4 plots the results of modeled H₂S concentrations as a function of mixing heights. H₂S concentrations decrease with the increase of mixing height. At greater MMHs, more volume of air is available to dilute the emitted H₂S.

Effect of H₂S emission rate on H₂S dispersion

Another factor that obviously influences H₂S dispersion is the H₂S emission rate, which represents the amount of H₂S emitted from the landfill surface in a given time and is the product of flux rate (g/m²-s) and emission area (m²). Because of the heterogeneous characteristics of C&D debris, how it is disposed in landfills, differences in rainfall infiltrating into a given landfill, and differences in cover soil types and practices among sites, H₂S flux rates are expected to differ from site to site. Limited data are available describing H₂S flux rates from C&D debris. In a set of laboratory landfill columns, H₂S flux rates were measured and were found to vary over a wide range (three orders of magnitude) (Townsend et al., 2004). The maximum H₂S flux rate, found for a column of size-reduced gypsum drywall with no cover soil, was approximately 0.037 mg/ m²-s. A similar column that had 15 cm of sandy cover soil placed on the surface had a flux rate of 1.1×10^{-3} mg/ m²-s. In-situ measurements performed by the authors at several C&D debris landfills found H₂S surface flux rates typically less than 2×10^{-7} mg/m²-s, with the exception of localized

Figure 3 H₂S concentration as a function of (a). Wind speed; (b). Wind direction


Figure 4 H₂S concentration change as a function of mixing height

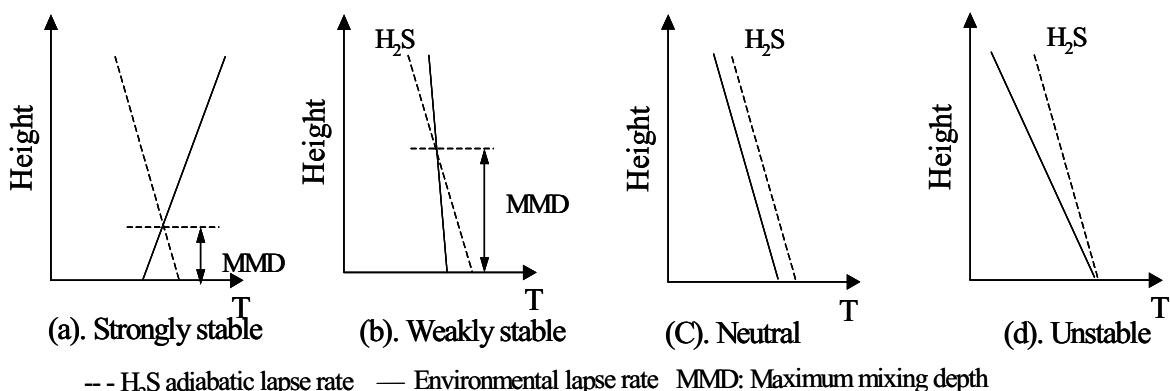
“hot spots” where high H₂S emission rates as high as 0.032 mg/m²·s were measured (Reinhart and Townsend, 2003). However, due to the small emission area, the contribution to these hot spots to the overall emission rate might be low.

Maximum H₂S concentrations were modeled as a series of possible flux rates and wind speeds at the hypothetical landfill (Figure 5). As expected, H₂S concentrations increase with an increase in the flux rate. The results indicate that at flux rates lower than 1.0×10^{-9} mg/m²·s should not present an odor problem (under the conditions of the hypothetical scenario). At emission rates on the order of 1.0×10^{-8} mg/m²·s, the odor will likely be noted at lower wind speeds, but should be below the odor threshold at higher wind speeds. At emission rates above 1.0×10^{-7} mg/m²·s, the H₂S concentrations will likely not be diluted to below odor threshold by wind dilution alone.

Effect of lapse rates on H₂S dispersion

A common observation at C&D debris landfills is that H₂S concentrations (i.e., odor complaints) are greatest in the early morning hours and lowest in the afternoon. This can likely be explained by the diurnal change of mixing height. In general, minimum MMH values occur in the

Figure 5 H₂S concentration change as function of emission rate and wind speed


morning before sunrise. As solar energy heats up the ground and warms the air, the MMH expands and rises by convection, resulting in decreasing ambient H_2S concentrations (Figure 5).

Another reason for the temporal changes in odor throughout the day might be the change of lapse rates. The lapse rate is the decreases in temperature with height in the troposphere due to the reduction of heating processes and radiative cooling of air. The environmental lapse rate changes during the whole day because of radiation inversion. The inversion occurs at night and early morning when the ground radiates heat to space, cooling the layer of air above it. When the sun rises, it heats the ground surface, resulting in the lapse rate change (Cooper and Alley, 1990).

Because of the daily change of environmental lapse rate, the H_2S vertical dispersion will also be affected. When the warm gas is emitted from the surface of a landfill, it will rise and undergo adiabatic expansion and then cool. Because the environmental temperature is inverted in the morning (Figure 6 (a) and (b)), if a warm parcel of H_2S gas is moved upward, it will follow the adiabatic lapse rate and be cooler than the surrounding environment. Negative buoyancy will force it back toward its starting spot. If the parcel of H_2S is moved downward, it will be warmer than the surrounding air, and buoyancy will also force it back toward its starting spot. Therefore, the atmospheric condition is very stable and H_2S vertical disturbances are minimized, which means the emitted H_2S cannot be diluted well in the morning. In the afternoon, however, heat from the sun eliminates the temperature inversion (Figure 6 (c) (d)). When a parcel of warm H_2S gas is released into an environment where the temperature decrease with height is greater than the adiabatic lapse, the parcel will rise rapidly. The afternoon atmosphere is unstable and conditions for the vertical dispersion of H_2S is excellent, reducing the ambient H_2S concentrations at landfills.

Effect of rain on H_2S dispersion

Rain can impact H_2S production and resulting odor complaints in several manners. In a laboratory investigation, it was observed that water addition into simulated landfill columns resulted in fluctuating H_2S emissions (Townsend, 2003). It was hypothesized that water can effectively seal the pores in cover soil and thus reduce the vertical H_2S gas permeability of the soil layer. It has been reported that the flow of gas from a landfill is greatly affected by the moisture content of the cover material (Bogner, 1992; Kjeldsen and Fischer, 1995) and the moisture content of the cover soil has been cited as the most important internal factor controlling gaseous emissions from MSW landfills (Bogner, 1992). Another possible reason for reduced H_2S emissions is its solubility in water. Due to the similar structure to water, at 27°C to 16°C , the solubility of H_2S in water ranges from approximately 3,018 to 4,033 mg/L (Chwirka, 1990). Therefore, when H_2S gas passes through wet cover soil, it would tend to dissolve into the water, thereby reducing H_2S

Figure 6 The effect of environmental lapse rate on H_2S vertical dispersion

emissions.

On the other hand, it has been noticed that for several days after a rain event, the ambient H₂S concentrations are higher than before (Johnson, 1986). As mentioned above, H₂S production is the result of gypsum drywall biodegradation by sulfate reducing bacteria (SRB). Sufficient water is needed for SRB survival and plays a very important role in this biochemical reaction. Stimulated by rainwater, the sulfate reducing bacteria may flourish and produce more H₂S. After the evaporation of water held in cover soils, the accumulated H₂S gas is emitted, resulting in higher ambient H₂S concentration. Rainfall might also promote the formation of “hot spots”. Hot spots can result from cover soil erosion after a storm and from higher gas pressures that develop when the cover soil is saturated by rainwater. While the rain may seal the cover soil, it may also lead to the formation of distinct gaps or seeps where large amounts of H₂S escape. Those “hot spots” have been observed at many landfills, and are often associated with a black discoloration of in the surrounding soil.

Case study

As shown in Figure 1 (b), the model scenario based upon the real landfill consists of two phases, a closed phase and a working phase. The closed phase and working phase areas are approximately 232,000 m² and 33,000 m², respectively. Based on a range of in-situ flux chamber measurements at the site, the H₂S flux rate for the closed phase was modeled as 2.9×10^{-8} mg/m².s and the emission rate for the working phase was modeled as 1.6×10^{-7} mg/m².s. Several in-situ ambient H₂S concentration surveys were made under different weather conditions. It was observed that downwind H₂S concentrations were higher than upwind. However, due to the effect of wind, ambient concentration measurements were variable. Therefore, the survey results listed in Table 1 are provided as concentration ranges. The relative wind conditions at the site during the time when the measurements were taken were accounted for in the model by adjusting the wind speed. On days where light wind conditions were noted, a wind speed of 2 m/s was used, while on days where strong wind conditions were observed, a wind speed of 6 m/s was modeled.

Table 1 shows the comparison of in-situ measurements and the calculated results by running the RAM model. Again, the data were not collected for the purpose of validating a dispersion model. These model simulations were performed to provide a rough comparison of what the model predicts versus the magnitude of the measurements at the site. The model results are comparable to the measured results. Both results showed that H₂S concentrations in the closed phase are lower than in the working phase because of cover soil. The cover soil functions as a physical barrier to reduce H₂S emission from landfills. Due to the pressure or concentration gradient, the generated H₂S tends to diffuse through the cover soil, a porous soil matrix, in which some physical or chemical gas-solid reactions would take place to reduce H₂S flux. On the other hand, in the working phase, without a barrier layer, H₂S can constantly flow out without much difficulty, resulting in a higher H₂S flux rate.

One of the reasons for the slight difference between actual measurements and modeled results is the possible change of wind speed or direction during the in-situ survey. Another difference is the minimum H₂S concentration. The Jerome meter has a detection limit of 3 ppb, while the RAM model can predict concentrations lower than 0.5 ppb.

Table1. H₂S concentration comparison between in-situ measurement and modeled results

Weather	Closed phase (ppb)		Working phase (ppb)	
	Measurement	Model	Measurement	Model
29 ⁰ C, light wind	4 - 6	2-8	8 - 13	1-13
28 ⁰ C, light wind	3 - 4	2-8	5 - 13	1-13
31 ⁰ C, strong wind	3 - 4	1-5	5 - 9	0.5-7
30 ⁰ C, strong wind	3 - 4	1-5	5 - 9	0.5-7
29 ⁰ C, strong wind	3 - 4	1-5	5 - 15	0.5-7

CONCLUSIONS

Odor problems associated with H₂S dispersion are a major concern at C&D debris landfills. H₂S emission and dispersion are affected by many factors, such as meteorological conditions, topography, and composition of the C&D debris. The ambient air H₂S concentrations surrounding these landfills, likewise, tend to be variable over time and from site to site. The RAM (Gaussian-Plume Multiple Source Air Quality Algorithm) model was used to examine the factors influencing H₂S dispersion at a hypothetical C&D debris landfills and at a scenario developed from an actual landfill site. By using the actual H₂S emission rates as model inputs, the results were comparable to the actual in-situ measurements. It is easy to get the conceptual H₂S concentration distribution in C&D debris landfills under different environment conditions, which can be conveniently used for landfill design and operation, health risk assessment, environmental impact analysis and community relations issues.

Wind plays an important role in the factors determining H₂S dispersion. In general, the higher the wind speed, the lower the ambient H₂S concentration because of the mixing and dilution by wind. Moreover, the shifting of wind direction can also reduce H₂S concentration by dispersing H₂S over a larger area. Another important factor is radiation inversion, which daily changes the environmental lapse rate and maximum mixing height (MMH) at landfills, making H₂S concentrations in the afternoon lower than in the morning. An important meteorological factor, rain can reduce H₂S emissions by sealing and dissolving diffused H₂S gas. Rain water can also, also however, stimulate the activity of sulfate reducing bacteria to produce more H₂S, resulting in higher ambient H₂S concentrations, as well as to remove cover soil and create hot-spots on the landfill surface where H₂S flux rates are at their highest.

ACKNOWLEDGEMENTS

This work was supported by the Florida Center for Solid and Hazardous Waste Management. The authors wish to thank the support of the project sponsors, Dr. Debra Reinhart and Sangho Eun from the University of Central Florida and Dr. Wu from the University of Florida. Thanks are extended to the construction and demolition debris landfill owners and operators for facilitating the sampling events.

REFERENCES

Agency for Toxic Substances and Disease Registry (ATSDR). (2001). Landfill Gas Primer: An Overview for Environmental Health Professionals. Department of Health and Human Services. ATSDR. Division of Health Assessment and Consultation.

Arizona Instruments LLC. (2003). Jerome 631-X Hydrogen Sulfide Analyzer Operational Manual. Tempe, Arizona.

Bibbero R.J. and Young, I.G. (1974). Systems Approach to Air Pollution Control. John Wiley& Sons. New York

Bogner, J.. (1992).Anaerobic Burial of Refuse in Landfills: Increased Atmospheric Methane and Implications for Increased Carbon Storage. Ecological Bulletins. 42: 98-108.

Catalano, J., Turner, D.. and Novak, J.H. (1987). User's Guide for RAM. U.S. Environmental Protection Agency, EPA/600/8-87/046, Research Triangle Park, NC

Chakrabarti S. (2002) "Generation and Composition of Construction and Demolition Waste in Florida," Master's Thesis, University of Central Florida, Orlando, FL

Chwirka, J.. and Satchell, T..(1990). Hydrogen Sulfide Treatment Systems in Sanitary Sewers. Water Environment & Technology. July.pp:48-53.

Cooper, C.. and Alley, F.. 1990. Air Pollution Control: a Design Approach. Waveland Press, Inc. Prospect Heights, Illinois.

Crosson, J., 1995. County Focuses on Mine Security: Hydrogen Sulfide Gas Problems at Sunset Mine and Landfill Prompt Concern. The Tampa Tribune. February 15, 1995. Pasco Section. Page 1.

Environmental Protection Agency (EPA) (1998). Characterization of Buliding-related Construction and Demolition Debris in the United States. Report No. EPA530-R-98-010. Washington, D.C

Flynn, B.E. (1998). Invisible threat: Odor & Landfill Gas from C&D Waste. Waste Age. Jan. pp: 91-97.

Godish, T. 1991. Air Quality 2nd . Lewis Publishers, Inc. Chelsea, Mich.

Gypsum Association. (1992) Treatment and Disposal of Gypsum Board Waste: Industry Position Paper. Construction Dimensions, February, 5-6,29-30.

Johnson, B. (1986). Gypsum Wallboard Creates Landfill Odor Problem. World Wastes. July.pp:53-54.

Kjeldsen, P., and Fischer, E.V., (1995). Landfill Gas Migration: Field Investigations at Skellingsted Landfill, Denmark. Waste Management and Research. 13: 467-484.

Musick, M. (1992). Recylce Gypsum from C&D Debris. Biocycle. March

Noel, D.. (1995). Air Pollution Control Engineering. New York ,McGraw-Hill

Perera, M.,, Hettiaratchi, J.,, and Achari, G. (2002). A Mathematical Modeling Approach to Improve the Point Estimation of Landfill Gas Surface Emissions Using the Flux Chamber Technique. J. Environ. Eng. Sci. 1: 451-463

Reinhart, D.. and Townsend, T.. (2003) Control of Odors from Construction and Demolition Debris Landfills. Report Proposal Prepared for Florida Center for Solid and Hazardous Waste Management.

Schmidet, C.,, Wilsey, S.,, and Hasek, T. (1998). Technical Approach for the Assessment of Air Emission from Municipal Landfills Using the US EPA Flux Chamber and Dispersion Modeling to Predict Off-site Impact Potential. Air and Waste Management Association's 91st Annual Meeting & Exhibition. June, 1998, San Diego, California

Seinfeld, J.. (1975). Air Pollution: Physical and Chemical Fundamentals. McGraw-Hill, Inc.

Townsend, T., Chadik, P., Bitton, G., Booth, M., Lee, S., and Yang, K. (2000). Gypsum Drywall Impact on Odor Production at Landfills: Science and Control Strategies. Report Prepared for Florida Center for Solid and Hazardous Waste Management. Report #: 00-09

Townsend, T., Jambeck, J. Jang, Y., Plaza, C. Xu, Q (2004). C&D Waste Landfills in Florida: Assessment of True Impact and Exploration of Innovation Control Techniques. Report Prepared for Florida Center for Solid and Hazardous Waste Management.

Yedla, S. and Parikh, J. (2002). Development of a Purpose Built Landfill System for the Control of Methane Emissions from Municipal Solid Waste. Waste Management. 22: 501-506